WICLO YOUIC

从我们在线的产品目录中提取出来:

sks-15/CI

当前: 2025-01-27

最小的超声波传感器: sks系列传感器为方形外壳。

主要特点

- > 极小的外形尺寸, 带两个M3的螺纹安装孔
- › 和许多光电传感器在安装尺寸上兼容 › 苛刻环境下的最佳替代品
- ➤ IO-Link 接口 ➤ 支持最新的工业标准
- > 自动同步和异步工作 > 最大可支持十个传感器近距离同时工作
- > 可选配导波管 sks1
- **>** 更好的温度补偿功能,45秒内能调整到工作状态
- > Smart Sensor Profiles > more transparency between IO-Link Devices
- > UL认证符合加拿大和美国安全标准

基本特点

- > 1 个pnp或npn开关量输出
- > 模拟量输出4-20 mA和0-10 ∨
- > 使用按键来进行microsonic的示教
- **>** 0.1 mm 分辨率
- **)** 10-30 V 工作电压

产品描述

sks 传感器

是microsonic最小的超声波传感器, 其外壳设计比zws传感器缩小了33%。

超声波传感器可以监控自动化领域无数工作场合。sks的小尺寸完美实现了局促空间内的安装,例如电子行业的采样电路板和芯片,传送带上有无的检测或者极小的容器内料位的测量。这款超声波传感器的外形尺寸类似市面上常规的光电传感器,在光电或者电容传感器不好检测的场合,这款超声波传感器在安装上直接替代,只要两个M3的螺丝就能完成安装。

开关量输出:

1 switching output, optionally in pnp-, npn- or Push-Pull circuitry

1 analogue output 4-20 mA or 0-10 V

模拟量传感器的温度补偿得到了显著的改善。

模拟量传感器的温度补偿得到了显著的改善。上电以后最多45s内传感器就能达到最佳工作状态。我们补偿自身温度的上升和外界的安装条件,实现了不同环境中更高精度的测量。.

自学习按钮

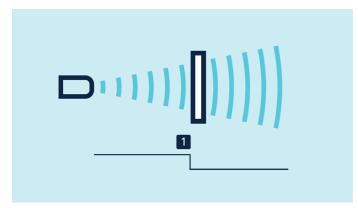
在传感器顶部的自学习按钮,可以非常方便地设置想要的开关量距离和模式。

2个LED灯

显示传感器当前的工作状态。

三种工作模式:

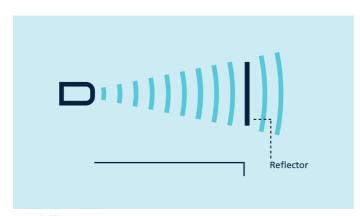
- > 漫反射模式(单开关点模式)
- > 反射板模式


MICCO/ONIC sks 超声波传感器

> 窗口模式

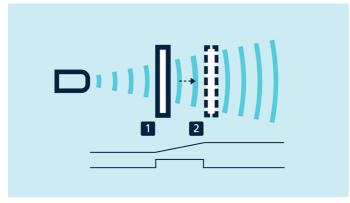
允许使用通用的microsonic示教程序进行参数配置。

漫反射模式:


的设置通过放置目标物在想要的检测距离(1)处, 使其被检测到, 按下按键大约3秒, 然后再次按下大约1秒, 设置完毕。

单开关点模式的自学习

反射板模式


可以在永久安装好的发射板的帮助下设置, 当sks传感器和反射板装好后, 按下按键大约3秒, 然后再次按下大约10秒。这样, 反射板模式就设定好了。

反射板模式的自学习

模拟量输出的设置:

首先将目标物放置在靠近传感器的窗口极限点(1)处, 使其被检测到。然后按下按键大约3秒钟, 将目标物移动到远离传感器的窗口极限点(2)处, 再次按下按键大约1秒钟, 设置完毕。

模拟量特性曲线和带两个检测点的窗口模式的自学习

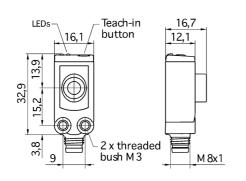
窗口模式的设定

设定带两个检测点的单开关量输出的窗口模式,操作方法和设置模拟量输出是的一样。

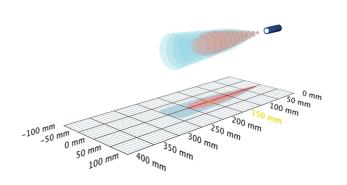
常开/常闭功能和模拟量特性曲线的递增/递减

也可以通过按键设置。

SoundPipe sks1


导波管 sks1 收窄了声波范围,实现了小尺寸的测量,可以直接扣在sks的发射面上。

集成IO-Link


1.1版的传感器集成了IO-Link带开关量输出。The sks-15/CF/A supports the Smart Sensor Profile.

sks-15/CI

外壳

检测区域

1 x 4-20 mA模拟量输出

250 mm

检测范围	20 - 250 mm
设计	胶体的
工作模式	模拟距离测量
特性	kleinste quaderförmige Bauform schlankes Schallfeld UL Listed

超声波特性

测量方法	回波传播时间
换能器频率	380 kHz
盲区	20 mm
检测范围	150 mm
最大检测范围	250 mm
分辨率	0.10 mm
重复精度	± 0.15 %
精度	±1% (内置温度漂移补偿)

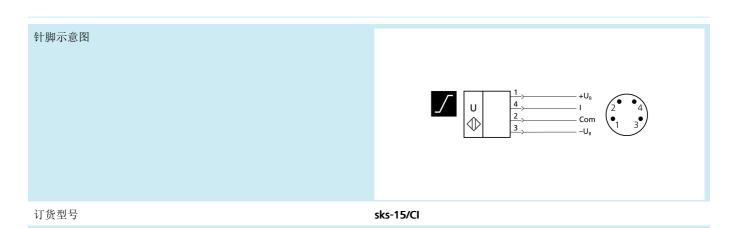
电气数据

工作电压	15 V bis 30 V DC, verpolfest
电压脉动	± 10 %
空载电流损耗	≤ 25 mA
连接类型	4芯M8接插件

sks-15/CI

输出量	
输出1	模拟量电流输出:4-20 mA,可切换,递增/递减
响应时间	24 ms
上电延时	< 300 ms

输入


输入1	com端输入
-----	--------

外壳

材质	ABS
超声波换能器	泡沫聚氨酯,玻璃填充的环氧树脂
防护等级EN 60529	IP 67
工作温度	-25°C to +70°C
储存温度	-40°C 到 +85°C
重量	8 g

技术特点/特性

温度补偿	是
控制装置	1个按键
设定范围	Teach-in via push-button
Synchronisation	yes, via external clock generator
多通道的	否
指示灯	1 x LED 绿灯:工作, 1 x LED 黄灯:开关状态
特性	kleinste quaderförmige Bauform schlankes Schallfeld UL Listed

The content of this document is subject to technical changes. Specifications in this document are presented in a descriptive way only. They do not warrant any product features.